A survey of proof nets and matrices for substructural logics
نویسنده
چکیده
This paper is a survey of two kinds of “compressed” proof schemes, the matrix method and proof nets, as applied to a variety of logics ranging along the substructural hierarchy from classical all the way down to the nonassociative Lambek system. A novel treatment of proof nets for the latter is provided. Descriptions of proof nets and matrices are given in a uniform notation based on sequents, so that the properties of the schemes for the various logics can be easily compared. §
منابع مشابه
Substructural Logics and Residuated Lattices — an Introduction
This is an introductory survey of substructural logics and of residuated lattices which are algebraic structures for substructural logics. Our survey starts from sequent systems for basic substructural logics and develops the proof theory of them. Then, residuated lattices are introduced as algebraic structures for substructural logics, and some recent developments of their algebraic study are ...
متن کاملDisplaying and Deciding Substructural Logics
Many logics in the relevant family can be given a proof theory in the style of Belnap's display logic (Belnap 1982). However, as originally given, the proof theory is essentially more expressive than the logics they seek to model. In this paper, we consider a modiied proof theory which more closely models relevant logics. In addition, we use this proof theory to provide decidability proofs for ...
متن کاملDisjunction property and complexity of substructural logics
We systematically identify a large class of substructural logics that satisfy the disjunction property (DP), and show that every consistent substructural logic with the DP is PSPACE-hard. Our results are obtained by using algebraic techniques. PSPACE-completeness for many of these logics is furthermore established by proof theoretic arguments.
متن کاملDisplaying and Deciding Substructural Logics 1: Logics with Contraposition
Many logics in the relevant family can be given a proof theory in the style of Belnap's display logic (Belnap 1982). However, as originally given, the proof theory is essentially more expressive than the logics they seek to model. In this paper, we consider a modi ed proof theory which more closely models relevant logics. In addition, we use this proof theory to provide decidability proofs for ...
متن کاملTopological Duality and Algebraic Completions
In this chapter we survey some developments in topological duality theory and the theory of completions for lattices with additional operations paying special attention to various classes of residuated lattices which play a central role in substructural logic. We hope this chapter will serve as an introduction and invitation to these subjects for researchers and students interested in residuate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1203.4912 شماره
صفحات -
تاریخ انتشار 2012